Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles

نویسندگان

  • Urmila P. Kodavanti
  • Ronald Thomas
  • Allen D. Ledbetter
  • Mette C. Schladweiler
  • Jonathan H. Shannahan
  • J. Grace Wallenborn
  • Amie K. Lund
  • Matthew J. Campen
  • Elizabeth O. Butler
  • Reddy R. Gottipolu
  • Abraham Nyska
  • Judy E. Richards
  • Deborah Andrews
  • Richard H. Jaskot
  • John McKee
  • Sainath R. Kotha
  • Rishi B. Patel
  • Narasimham L. Parinandi
چکیده

BACKGROUND Mechanisms of cardiovascular injuries from exposure to gas and particulate air pollutants are unknown. OBJECTIVE We sought to determine whether episodic exposure of rats to ozone or diesel exhaust particles (DEP) causes differential cardiovascular impairments that are exacerbated by ozone plus DEP. METHODS AND RESULTS Male Wistar Kyoto rats (10-12 weeks of age) were exposed to air, ozone (0.4 ppm), DEP (2.1 mg/m(3)), or ozone (0.38 ppm) + DEP (2.2 mg/m(3)) for 5 hr/day, 1 day/week for 16 weeks, or to air, ozone (0.51 or 1.0 ppm), or DEP (1.9 mg/m(3)) for 5 hr/day for 2 days. At the end of each exposure period, we examined pulmonary and cardiovascular biomarkers of injury. In the 16-week study, we observed mild pulmonary pathology in the ozone, DEP, and ozone + DEP exposure groups, a slight decrease in circulating lymphocytes in the ozone and DEP groups, and decreased platelets in the DEP group. After 16 weeks of exposure, mRNA biomarkers of oxidative stress (hemeoxygenase-1), thrombosis (tissue factor, plasminogen activator inhibitor-1, tissue plasminogen activator, and von Willebrand factor), vasoconstriction (endothelin-1, endothelin receptors A and B, endothelial NO synthase) and proteolysis [matrix metalloprotease (MMP)-2, MMP-3, and tissue inhibitor of matrix metalloprotease-2] were increased by DEP and/or ozone in the aorta, but not in the heart. Aortic LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) mRNA and protein increased after ozone exposure, and LOX-1 protein increased after exposure to ozone + DEP. RAGE (receptor for advanced glycation end products) mRNA increased in the ozone + DEP group. Exposure to ozone or DEP depleted cardiac mitochondrial phospholipid fatty acids (DEP > ozone). The combined effect of ozone and DEP exposure was less pronounced than exposure to either pollutant alone. Exposure to ozone or DEP for 2 days (acute) caused mild changes in the aorta. CONCLUSIONS In animals exposed to ozone or DEP alone for 16 weeks, we observed elevated biomarkers of vascular impairments in the aorta, with the loss of phospholipid fatty acids in myocardial mitochondria. We conclude that there is a possible role of oxidized lipids and protein through LOX-1 and/or RAGE signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی اثردود موتورهای دیزلی بر سطح سرمی هورمون‌هایT3، T4 و تستوسترون در موش‌های صحرایی نر

Introduction:An association have been reported between diesel exhaust and endocrine disorders in several studies. Hence, this study aimed to investigate the effects of diesel exhaust on serum levels of T3, T4 and testosterone in male rats. Methods: In this laboratory experimental study, 24 male Wistar rats were randomly divided to 4 groups (6 series) consisting of the control group and groups...

متن کامل

Experimental Study on Diesel Exhaust Particles Agglomeration Using Acoustic Waves

Diesel exhaust particles are a complex mixture of thousands of gases and fine substances that contain more than 40 different environmental contaminants. Being exposed to these exhaust particles (called soot) can cause lung damage and respiratory problems. Diesel particulate filters are used in many countries for mobile sources as a legal obligation to decrease harmful effect of these fine pa...

متن کامل

Diesel exhaust exposure enhances the ozone-induced airway inflammation in healthy humans.

Exposure to particulate matter and ozone cause adverse airway reactions. Individual pollutant effects are often addressed separately, despite coexisting in ambient air. The present investigation was performed to study the effects of sequential exposures to diesel exhaust (DE) and ozone on airway inflammation in human subjects. Healthy subjects underwent bronchoscopy with bronchoalveolar lavage ...

متن کامل

Diesel exhaust and asthma: hypotheses and molecular mechanisms of action.

Several components of air pollution have been linked to asthma. In addition to the well-studied critera air pollutants, such as nitrogen dioxide, sulfur dioxide, and ozone, diesel exhaust and diesel exhaust particles (DEPs) also appear to play a role in respiratory and allergic diseases. Diesel exhaust is composed of vapors, gases, and fine particles emitted by diesel-fueled compression-ignitio...

متن کامل

Effect of exposure to diesel exhaust particles on the susceptibility of the lung to infection.

There are at least three mechanisms by which alveolar macrophages play a critical role in protecting the lung from bacterial or viral infections: production of inflammatory cytokines that recruit and activate lung phagocytes, production of antimicrobial reactive oxidant species, and production of interferon (an antiviral agent). In this article we summarize data concerning the effect of exposur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2011